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Amphitropic membrane proteins have a dual life as
soluble and membrane proteins. Under some circum-
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Membrane Proteins:
Adapting to Life at the Interface stances, they can be just as soluble as ordinary soluble

proteins, yet they are also capable of binding to mem-
branes with high affinity and, in many cases, inserting
themselves deeply into the hydrocarbon core of one of

A recent publication by Cravatt and colleagues which the two leaflets of a phospholipid bilayer. The transloca-
describes the structure of an integral membrane pro- tion of amphitropic membrane proteins between mem-
tein (FAAH) highlights that the structural differences brane and soluble phases is often used as a regulatory
between membrane proteins and soluble proteins are mechanism in processes such as signaling, cytoskeletal
not as disparate as is sometimes believed. regulation, and membrane trafficking.

The phosphoinositide lipids, which play central roles
Soluble proteins and membrane proteins are sometimes in all of the above-mentioned cell processes, are turned
thought of as two completely different classes of biomol- over by amphitropic enzymes that catalyze their synthe-
ecules that inhabit two completely different worlds. Their sis, hydrolysis, phosphorylation, and dephosphorylation
solubility, the nature of their molecular surfaces, the [2]. Phosphoinositide signaling is rich in examples of
pathways by which they fold, and the forces that stabi- soluble enzyme folds that have been cannibalized for
lize them are widely considered so different that it is membrane activity. The kinases that produce polyphos-
hard to even find a common basis for comparison. But phoinositides have the same catalytic fold as the protein
are the distinctions really so clear cut? A new structural kinase superfamily, but their folds have been drastically
study of an integral membrane protein, fatty acid amide modified for action at the interface [3, 4]. Phosphatidyl-
hydrolase (FAAH; [1]), has evolutionary implications that inositol phosphate kinase (PIPK) has a flattened face
highlight the shades of gray between the black and white that interacts electrostatically with phospholipid bi-

layers through extensive basic patches [5]. Moreover,extremes of soluble versus integral membrane proteins.
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this kinase is a dimer with both active sites on the same are dimers, the dimer interface is modified such that the
actives sites of FAAH are on the same face, even thoughflattened face, allowing simultaneous access of both

sites to the membrane-bound substrate. PI 3-kinase [4] the active sites of MAE2 are not. The adaptations have
many analogies to those seen for the phosphoinositidedoes not have such a flat face, but rather contains a

membrane binding C2 domain fused to the catalytic signaling enzymes, but the consequences are more
drastic in that FAAH is an integral rather than an amphi-domain that targets to the bilayer surface. The phospho-

inositide phosphatase PTEN is an adaptation of the pro- tropic membrane protein.
The amphitropic membrane proteins and monotopictein tyrosine phosphatase fold [6]. The active site of

PTEN is flatter and more open than that of the PTPases, integral membrane proteins fill the gray zone in the con-
tinuum between the soluble and membrane worlds. Howallowing access to the membrane-bound phosphoinosi-

tide headgroup, while a C2 domain is fused to the cata- and why have these intermediate classes of membrane
proteins evolved? While the membrane interface com-lytic domain and makes extensive interdomain contacts.

The phosphoinositide phosphatase and kinase cata- prises a minute fraction of the three-dimensional volume
of a cell, it plays a profound role in cell physiology thatlytic domains do not penetrate deeply into the mem-

brane, since they act on chemical bonds that are distal is completely out of proportion to its small volume. Reac-
tions occurring at the interface are the source of many ofto the membrane surface, but phospholipases are a

different story. Phosphoinositide-specific phospholi- the most important mediators of cell signaling, including
the endogenous ligands for the cannabinoid receptorpase C-� (PLC-�) is a membrane-interacting adaptation

of the ubiquitous TIM barrel fold of many soluble en- that are downregulated by FAAH. Regulation of the inter-
face is critical for diverse processes from endocytosiszymes [7, 8]. The TIM barrel active site is surrounded

by a rim of hydrophobic side chains, which facilitates and secretion to motility and cell structure. Thus, a wide
range of regulatory enzymes and other proteins havemembrane penetration by the enzyme. Cytosolic phos-

pholipase A2 (cPLA2), a distant structural cousin of solu- adapted themselves for an odd existence at the inter-
face. The sometimes unexpected structural adaptationsble �/� hydrolases, has an even more hydrophobic ac-

tive site [9]. As the name implies, however, the enzyme of soluble enzymes for life at the interface have been
compared to a well-known adaptation at the level ofcan be found in the cytosol. Its membrane binding and

substrate access requires the removal of a flexible lid whole-organism structure, the morphology of the floun-
der: perhaps bizarre and graceless, but uniquelyover the active site. The conformational change that

opens the lid allows cPLA2 to convert to a membrane adapted to its life at the interface between ocean and
sea floor.binding form.
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